Виды экранирующих материалов. Применение и экранирование

Техника заземления в системах промышленной автоматизации сильно различается для гальванически связанных и гальванически развязанных цепей. Большинство методов, описанных в литературе, относится к гальванически связанным цепям, доля которых в последнее время существенно уменьшилась в связи с резким падением цен на изолирующие DC-DC преобразователи.

3.5.1. Гальванически связанные цепи

Примером гальванически связанной цепи является соединение источника и приемника стандартного сигнала 0…5 В (рис. 3.95 , рис. 3.96). Чтобы пояснить, как правильно выполнить заземление, рассмотрим вариант неправильного (рис. 3.95) и правильного (рис. 3.96 , монтажа. На рис. 3.95 допущены следующие ошибки:

Перечисленные ошибки приводят к тому, что напряжение на входе приемника равно сумме напряжения сигала и напряжения помехи . Для устранения этого недостатка в качестве проводника заземления можно использовать медную шину большого сечения, однако лучше выполнить заземление так, как показано на рис. 3.96 , а именно:

Общим правилом ослабления связи через общий провод заземления является деление земель на аналоговую, цифровую, силовую и защитную с последующим их соединением только в одной точке. При разделении заземлений гальванически связанных цепей используется общий принцип: цепи заземления с большим уровнем помех должны выполняться отдельно от цепей с малым уровнем помех, а соединяться они должны только в одной общей точке. Точек заземления может быть несколько, если топология такой цепи не приводит к появлению участков "грязной" земли в контуре, включающем источник и приемник сигнала, а также если в цепи заземления не образуются замкнутые контуры, по которым циркулирует ток, наведенный электромагнитной помехой.

Недостатком метода разделения проводников заземления является низкая эффективность на высоких частотах, когда большую роль играет взаимная индуктивность между рядом идущими проводниками заземления, которая только заменяет гальванические связи на индуктивные, не решая проблемы в целом.

Большая длина проводников приводит также к увеличению сопротивления заземления, что важно на высоких частотах. Поэтому заземление в одной точке используется на частотах до 1 МГц, свыше 10 МГц заземлять лучше в нескольких точках, в промежуточном диапазоне от 1 до 10 МГц следует использовать одноточечную схему, если наиболее длинный проводник в цепи заземления меньше 1/20 от длины волны помехи. В противном случае используется многоточечная схема [Барнс ].

Заземление в одной точке часто используется в военных и космических устройствах [Барнс ].

3.5.2. Экранирование сигнальных кабелей

Рассмотрим заземление экранов при передаче сигнала по витой экранированной паре, поскольку этот случай наиболее типичен для систем промышленной автоматизации.

Если частота помехи не превышает 1 МГц, то кабель нужно заземлять с одной стороны. Если его заземлить с двух сторон (рис. 3.97), то образуется замкнутый контур, который будет работать как антенна, принимая электромагнитную помеху (на рис. 3.97 путь тока помехи показан штриховой линией). Ток, протекающий по экрану, является источником индуктивных наводок на соседних проводах и проводах, находящихся внутри экрана. Хотя магнитное поле тока оплетки внутри экрана теоретически равно нулю, но вследствие технологического разброса при изготовлении кабеля, а также ненулевого сопротивления оплетки наводка на провода внутри экрана может быть значительной. Поэтому экран нужно заземлять только с одной стороны, причем со стороны источника сигнала.

Оплетку кабеля надо заземлять со стороны источника сигнала. Если заземление сделать со стороны приемника (рис. 3.98), то ток помехи будет протекать по пути, показанному на рис. 3.98 штриховой линией, т.е. через емкость между жилами кабеля, создавая на ней и, следовательно, между дифференциальными входами, напряжение помехи. Поэтому заземлять оплетку надо со стороны источника сигнала (рис. 3.99). В этом случае путь для прохождения тока помехи отсутствует.

Если источник сигнала не заземлен (например, термопара), то заземлять экран можно с любой стороны, т.к. в этом случае замкнутый контур для тока помехи не образуется.

На частотах более 1 МГц увеличивается индуктивное сопротивление экрана и токи емкостной наводки создают на нем большое падение напряжения, которое может передаваться на внутренние жилы через емкость между оплеткой и жилами. Кроме того, при длине кабеля, сравнимом с длиной волны помехи (длина волны помехи при частоте 1 МГц равна 300 м, на частоте 10 МГц - 30 м) возрастает сопротивление оплетки (см. раздел Модель «земли»), что резко повышает напряжение помехи на оплетке. Поэтому на высоких частотах оплетку кабеля надо заземлять не только с обеих сторон, но и в нескольких точках между ними (рис. 3.100). Эти точки выбирают на расстоянии 1/10 длины волны помехи одна от другой. При этом по оплетке кабеля будет протекать часть тока , передающего помеху в центральную жилу через взаимную индуктивность. Емкостной ток также будет протекать по пути, показанному на рис. 3.98 , однако высокочастотная компонента помехи будет ослаблена. Выбор количества точек заземления кабеля зависит от разницы напряжений помехи на концах экрана, частоты помехи, требований к защите от ударов молнии или от величины токов, протекающих через экран в случае его заземления.

В качестве промежуточного варианта можно использовать второе заземление экрана через емкость (рис. 3.99). При этом по высокой частоте экран получается заземленным с двух сторон, по низкой частоте - с одной. Это имеет смысл в том случае, когда частота помехи превышает 1 МГц, а длина кабеля в 10…20 раз меньше длины волны помехи, т.е. когда еще не нужно выполнять заземление в нескольких промежуточных точках. Величину емкости можно рассчитать по формуле , где - верхняя частота границы спектра помехи, - емкостное сопротивление заземляющего конденсатора (доли Ома). Например, на частоте 1 МГц конденсатор емкостью 0,1 мкФ имеет сопротивление 1,6 Ом. Конденсатор должен быть высокочастотным, с малой собственной индуктивностью.

Для качественного экранирования в широком спектре частот используют двойной экран (рис. 3.101) [Zipse ]. Внутренний экран заземляют с одной стороны, со стороны источника сигнала, чтобы исключить прохождение емкостной помехи по механизму, показанному на рис. 3.98 , а внешний экран уменьшает высокочастотный наводки.

Во всех случаях экран должен быть изолирован, чтобы предотвратить случайные его контакты с металлическими предметами и землей.

Напомним, что частота помехи - это частота, которую могут воспринимать чувствительные входы средств автоматизации. В частности, если на входе аналогового модуля имеется фильтр, то максимальная частота помехи, которую надо учитывать при экранировании и заземлении, определяется верхней граничной частотой полосы пропускания фильтра.

Поскольку даже при правильном заземлении, но длинном кабеле помеха все равно проходит через экран, то для передачи сигнала на большое расстояние или при повышенных требованиях к точности измерений сигнал лучше передавать в цифровой форме или через оптический кабель. Для этого можно использовать, например, модули аналогового ввода RealLab! серии с цифровым интерфейсом RS-485 или оптоволоконные преобразователи интерфейса RS-485, например типа SN-OFC-ST-62.5/125 фирмы RealLab! .

Нами было проведено экспериментальное сравнение различных способов подключения источника сигнала (терморезистора сопротивлением 20 КОм) через экранированную витую пару (0,5 витка на сантиметр) длиной 3,5м. Был использован инструментальный усилитель RL-4DA200 с системой сбора данных RL-40AI фирмы RealLab!. Коэффициент усиления канала усиления был равен 390, полоса пропускания 1 КГц. Вид помехи для схемы рис. 3.102 -а представлен на рис. 3.103 .

3.5.4. Экраны кабелей на электрических подстанциях

На электрических подстанциях на оплетке (экране) сигнального кабеля автоматики, проложенного под высоковольтными проводами на уровне земли и заземленного с одной стороны, может наводиться напряжение величиной в сотни Вольт во время коммутации тока выключателем. Поэтому с целью электробезопасности оплетку кабеля заземляют с двух сторон.

Для защиты от электромагнитных полей с частотой 50 Гц экран кабеля также заземляют с обеих сторон. Это оправдано в случаях, когда известно, что электромагнитная наводка с частотой 50 Гц больше, чем наводка, вызванная протеканием выравнивающего тока через оплетку.

3.5.5. Экраны кабелей для защиты от молнии

Для защиты от магнитного поля молнии сигнальные кабели систем автоматизации, проходящие по открытой местности, должны быть проложены в металлических трубах из ферромагнитного материала, например, стали. Трубы играют роль магнитного экрана [Vijayaraghavan ]. Нержавеющую сталь использовать нельзя, поскольку этот материал не является ферромагнитным. Трубы прокладывают под землей, а при наземном расположении они должны быть заземлены примерно через каждые 3 метра [Zipse ]. Кабель должен быть экранирован и экран заземлен. Заземление экрана должно быть произведено очень качественно с минимальным сопротивлением на землю.

Внутри здания магнитное поле ослабляется в железобетонных зданиях и не ослабляется в кирпичных.

Радикальным решением проблем защиты от молнии является применение оптоволоконного кабеля, который стоит уже достаточно дешево и легко подключается к интерфейсу RS-485, например, через преобразователи типа SN-OFC-ST-62.5/125 .

3.5.6. Заземление при дифференциальных измерениях

Если источник сигнала не имеет сопротивления на землю, то при дифференциальном измерении образуется "плавающий вход" (рис. 3.105). На плавающем входе может наводиться статический заряд от атмосферного электричества (см. также раздел "Виды заземлений") или входного тока утечки операционного усилителя. Для отведения заряда и тока на землю потенциальные входы модулей аналогового ввода обычно содержат внутри себя резисторы сопротивлением от 1 МОм до 20 МОм, соединяющие аналоговые входы с землей. Однако при большом уровне помех или большом сопротивлении источника сигнала сопротивление 20 МОм может оказаться недостаточным и тогда необходимо дополнительно использовать внешние резисторы сопротивлением от десятков кОм до 1 МОм или конденсаторы с таким же сопротивлением на частоте помехи (рис. 3.105).

3.5.7. Интеллектуальные датчики

В последнее время получили быстрое распространение и развитие так называемые интеллектуальные датчики, содержащие микроконтроллер для линеаризации характеристики преобразования датчика (см., например, "Датчики температуры, давления, влажности"). Интеллектуальные датчики выдают сигнал в цифровой или аналоговой форме [Caruso ]. Вследствие того, что цифровая часть датчика совмещена с аналоговой, при неправильном заземлении выходной сигнал имеет повышенный уровень шума.

Некоторые датчики, например, фирмы Honeywell, имеют ЦАП с токовым выходом и поэтому требуют подключения внешнего сопротивления нагрузки (порядка 20 кОм [Caruso ]), поэтому полезный сигнал в них получается в форме напряжения, падающего на нагрузочном резисторе при протекании выходного тока датчика.

шкафы соединены между собой, что создает замкнутый контур в цепи заземления, см. рис. 3.69 , раздел "Защитное заземление зданий" , "Заземляющие проводники" , "Электромагнитные помехи" ;

проводники аналоговой и цифровой земли в левом шкафу на большом участке идут параллельно, поэтому на аналоговой земле могут появиться индуктивные и емкостные наводки от цифровой земли;

блок питания (точнее, его отрицательный вывод) соединен с корпусом шкафа в ближайшей точке, а не на клемме заземления, поэтому по корпусу шкафа течет ток помехи, проникающий через трансформатор блока питания (см. рис. 3.62 , );

используется один блок питания на два шкафа, что увеличивает длину и индуктивность проводника заземления;

в правом шкафу выводы земли подсоединены не к клемме заземления, а непосредственно к корпусу шкафа. При этом корпус шкафа становится источником индуктивной наводки на все провода, проходящие вдоль его стен;

в правом шкафу, в среднем ряду, аналоговая и цифровая земли соединены прямо на выходе блоков, что неправильно, см. рис. 3.95 , рис. 3.104 .

Перечисленные недостатки устранены на рис. 3.108 . Дополнительным улучшением разводки в этом примере было бы применение отдельного проводника заземления для наиболее чувствительных аналоговых модулей ввода.

В пределах шкафа (стойки) желательно группировать аналоговые модули отдельно, цифровые - отдельно, чтобы при прокладке проводов в кабельном канале уменьшить длину участков параллельного прохождения цепей цифровой и аналоговой земли.

3.5.9. Распределенные системы управления

В системах управления, распределенных по некоторой территории с характерными размерами в десятки и сотни метров, нельзя использовать модули ввода без гальванической развязки. Только гальваническая развязка позволяет соединять цепи, заземленные в точках с разными потенциалами.

Кабели, проходящие по открытой местности, должны быть защищены от магнитных импульсов во время грозы (см. раздел "Молния и атмосферное электричество" , "Экраны кабелей для защиты от молнии") и магнитных полей при коммутации мощных нагрузок (см. раздел "Экраны кабелей на электрических подстанциях"). Особое внимание надо уделить заземлению экрана кабеля (см. раздел "Экранирование сигнальных кабелей"). Радикальным решением для территориально распределенной системы управления является передача информации по оптическому волокну или радиоканалу.

Неплохие результаты можно получить, отказавшись от передачи информации по аналоговым стандартам в пользу цифровых. Для этого можно использовать модули распределенной системы управления RealLab! серии NL фирмы Reallab! . Суть этого подхода заключается в том, что модуль ввода располагают возле датчика, уменьшая тем самым длину проводов с аналоговыми сигналами, а в ПЛК передается сигнал по цифровому каналу. Разновидностью этого подхода является применение датчиков со встроенными в них АЦП и цифровым интерфейсом (например, датчиков серии NL-1S).

3.5.10. Чувствительные измерительные цепи

Для измерительных цепей с высокой чувствительностью в плохой электромагнитной обстановке лучшие результаты дает применение "плавающей" земли (см. раздел "Виды заземлений") совместно с батарейным питанием [Floating ] и передачей информации по оптоволокну.

3.5.11. Исполнительное оборудование и приводы

Цепи питания двигателей с импульсным управлением, двигателей сервоприводов, исполнительных устройств с ШИМ-управлением должны быть выполнены витой парой для уменьшения магнитного поля, а также экранированы для снижения электрической компоненты излучаемой помехи. Экран кабеля должен быть заземлен с одной стороны. Цепи подключения датчиков таких систем должны быть помещены в отдельный экран и по возможности пространственно отдалены от исполнительных устройств.

Заземление в промышленных сетях

Промышленная сеть на основе интерфейса RS-485 выполняется экранированной витой парой с обязательным применением модулей гальванической развязки рис. 3.110). Для небольших расстояний (порядка 10 м) при отсутствии поблизости источников помех экран можно не использовать. При больших расстояниях (стандарт допускает длину кабеля до 1,2 км) разница потенциалов земли в удаленных друг от друга точках может достигать несколько единиц и даже десятков вольт (см. раздел "Экранирование сигнальных кабелей"). Поэтому, чтобы предотвратить протекание по экрану тока, выравнивающего эти потенциалы, экран кабеля нужно заземлять только в одной точке (безразлично, в какой). Это также предотвратит появление замкнутого контура большой площади в цепи заземления, в котором за счет электромагнитной индукции может наводится ток большой величины при ударах молнии или коммутации мощных нагрузок. Этот ток через взаимную индуктивность наводит на центральной паре проводов э. д. с., которая может вывести из строя микросхемы драйверов порта.

При использовании неэкранированного кабеля на нем может наводиться большой статический заряд (несколько киловольт) за счет атмосферного электричества, который может вывести из строя элементы гальванической развязки. Для предотвращения этого эффекта изолированную часть устройства гальванической развязки следует заземлить через сопротивление, например, 0,1...1 МОм (на рис. 3.110 показано штриховой линией).

Особенно сильно проявляются описанные выше эффекты в сетях Ethernet с коаксиальным кабелем, когда при заземлении в нескольких точках (или отсутствии заземления) во время грозы выходят из строя сразу несколько сетевых Ethernet-плат.

В сетях Ethernet с малой пропускной способностью (10 Mбит/с) заземление экрана следует выполнять только в одной точке. В Fast Ethernet (100 Мбит/с) и Gigabit Ethernet (1 Гбит/с) заземление экрана следует выполнять в нескольких точках, пользуясь рекомендациями раздел "Экранирование сигнальных кабелей"

При прокладке кабеля на открытой местности нужно использовать все правила, описанные в разделе "Экранирование сигнальных кабелей"

3.5.12. Заземление на взрывоопасных объектах

На взрывоопасных промышленных объектах (см. раздел "Автоматизация опасных объектов") при монтаже цепей заземления многожильным проводом не допускается применение пайки для спаивания жил между собой, поскольку вследствие хладотекучести припоя возможно ослабление мест контактного давления в винтовых зажимах.

Экран кабеля интерфейса RS-485 заземляется в одной точке, вне взрывоопасной зоны. В пределах взрывоопасной зоны он должен быть защищен от случайного соприкосновения с заземленными проводниками. Искробезопасные цепи не должны заземляться, если этого не требуют условия работы электрооборудования (ГОСТ Р 51330.10, раздел "Экранирование сигнальных кабелей").

3.6. Гальваническая развязка

Гальваническая развязка (изоляция) цепей является радикальным решением большинства проблем, связанных с заземлением, и ее применение фактически стало стандартом в системах промышленной автоматизации.

Для осуществления гальванической развязки необходимо выполнить подачу энергии в изолированную часть цепи и обмен с ней сигналами. Подача энергии выполняется с помощью развязывающего трансформатора (в DC-DC или AC-DC преобразователях) или с помощью автономных источником питания: гальванических батарей и аккумуляторов. Передача сигнала осуществляется через оптроны и трансформаторы, элементы с магнитной связью, конденсаторы или оптоволокно.

Основная идея гальванической развязки заключается в том, что в электрической цепи полностью устраняется путь, по которому возможна передача кондуктивной помехи.

Гальваническая изоляция позволяет решить следующие проблемы:

    уменьшает практически до нуля напряжение синфазной помехи на входе дифференциального приемника аналогового сигнала (например, на рис. 3.73 синфазное напряжение на термопаре относительно Земли не влияет на дифференциальный сигнал на входе модуля ввода);

    защищает входные и выходные цепи модулей ввода и вывода от пробоя большим синфазным напряжением (например, на рис. 3.73 синфазное напряжение на термопаре относительно Земли может быть как угодно большим, если оно не превышает напряжение пробоя изоляции).

Для применения гальванической развязки система автоматизации делится на автономные изолированные подсистемы, обмен информацией между которыми выполняется с помощью элементов гальванической развязки. Каждая подсистема имеет свою локальную землю и локальный источник питания. Подсистемы заземляют только для обеспечения электробезопасности и локальной защиты от помех.

Основным недостатком цепей с гальванической развязкой является повышенный уровень помех от DC- DC преобразователя, который, однако, для низкочастотных схем можно сделать достаточно малым с помощью цифровой и аналоговой фильтрации. На высоких частотах емкость подсистемы на землю, а также проходная емкость элементов гальванической изоляции являются фактором, ограничивающим достоинства гальванически изолированных систем. Емкость на землю можно уменьшить, применяя оптический кабель и уменьшая геометрические размеры изолированной системы.

При использовании гальванически развязанных цепей понятие "напряжение изоляции " часто трактуется неправильно. В частности, если напряжение изоляции модуля ввода составляет 3 кВ, это не означает, что его входы могут находиться под таким высоким напряжением в рабочих условиях. В зарубежной литературе для описания характеристик изоляции используют три стандарта: UL1577, VDE0884 и IEC61010-01, но в описаниях устройств гальванической развязки не всегда даются на них ссылки. Поэтому понятие "напряжение изоляции" трактуется в отечественных описаниях зарубежных приборов неоднозначно. Главное различие состоит в том, что в одних случаях речь идет о напряжении, которое может быть приложено к изоляции неограниченно долго (рабочее напряжение изоляции) , в других случаях речь идет об испытательном напряжении (напряжение изоляции ), которое прикладывается к образцу в течение от 1 мин. до нескольких микросекунд. Испытательное напряжение может в 10 раз превышать рабочее и предназначено для ускоренных испытаний в процессе производства, поскольку напряжение, при котором наступает пробой, зависит от длительности тестового импульса.

табл. 3.26 показывает связь между рабочим и испытательным (тестовым) напряжением по стандарту IEC61010-01. Как видно из таблицы, такие понятия, как рабочее напряжение, постоянное, среднеквадратическое или пиковое значение тестового напряжения могут отличаться очень сильно.

Электрическая прочность изоляции отечественных средств автоматизации испытывается по ГОСТ 51350 или ГОСТ Р МЭК 60950-2002 синусоидальным напряжением с частотой 50 Гц в течение 60 сек при напряжении, указываемом в руководстве по эксплуатации как "напряжение изоляции". Например, при испытательном напряжении изоляции 2300 В рабочее напряжение изоляции составляет всего 300 В (табл. 3.26 Действующее значение, 50/60 Гц,

1 мин.

Наиболее существенное ослабление воздействиям ЭМИ на электронные системы и их элементы можно получить, применяя электромагнитные экраны .

Электромагнитными экранами называются конструкции, предназначенные для ослабления электромагнитных полей, создаваемых какими-либо источниками в некоторой области пространства, не содержащей этих источников, и широко используемые в современной электротехники.

В подавляющем большинстве случаев электромагнитные экраны делаются из металла: меди, алюминия, стали.

Принцип действия электромагнитного экрана заключается в следующем. Под действием первичного поля на поверхности экрана индуцируются заряды, а в его толще – токи и магнитная поляризация. Эти заряды, токи и поляризация создают вторичное поле. От сложения вторичного поля с первичным образуется результирующее поле, которое оказывается слабее первичного в защищаемой области пространства.

Электромагнитный экран – система линейная; отсюда следует, что для него справедлив принцип взаимности перемещений. Сказанное, в частности, означает, что эффективность экрана - коробки сохраняется одной и той же независимо от того расположен ли внутри него источник поля или защищенная область пространства. Это положение имеет большое практическое значение, так как при излучении эффективности экранирования позволяет ограничиться случаем расположения источника поля внутри экрана.

Количественную оценку эффективности электромагнитного экрана (эффективность экранирования) можно характеризовать отношением напряженности поля в защищенной области пространства при отсутствии экрана Е 0 , Н 0 и при наличии его (Е , Н ):

Величина Э Е , Н может быть выражена в простых отношениях или в децибелах (дБ).

Эффективность экрана существенно зависит от характера источника поля. Разнообразие возможных источников бесконечно: однако любой реальный источник может быть с необходимой точностью представлен в виде более или менее сложной совокупности электрических диполей и витков (рамок) с током (магнитных диполей).

В основе различия поведения экрана по отношению к разным реальным источникам лежит различие в его поведении по отношению к электрическому и магнитному диполям. Последнее различие является следствием разной структуры полей этих двух источников. В свободном пространстве при

где r – расстояние от источника;

λ – длина волны, различие в структурах полей обоих источников стирается: в любой точке пространства Е и Н практически синфазны, а их отношение оказывается почти такими же, как и в плоской волне, т.е. Е /Н = 120π Ом.

При r << λ/2πотношение Е /H зависит от положения точки наблюдения. В экваториальной плоскости (плоскости, проходящей через диполя перпендикулярно к его оси) оно приближенно и определяется следующими формулами:

Для электрического диполя:

Для магнитного диполя

Таким образом, с уменьшением r или увеличением λ (с уменьшением частоты f ) отношение Е к Н в случае электротехнического поля растет, роль магнитной составляющей убывает, и оказывается возможным рассматривать поле как квазиэлектростатическое.

В общем случае экран не только ослабляет, но и искажает поле источника в защитной области пространства. Поэтому его эффективность различна для электрической и магнитной составляющих поля. Это обстоятельство существенно затрудняет ее количественную оценку.

Только в простейших случаях эффективность экрана определяется однозначно (например, экранирование полупространства от плоской электромагнитной волны бесконечным однородным экраном).

Для последнего случая можно получить формулу, удобную для практических расчетов:

где σ – удельная проводимость материала экрана, см/м;

d – толщина экрана, м;

δ – эквивалентная глубина проникновения,

т.е. расстояние, на котором электромагнитная волна ослабевает в е раз и отстает на π/2 .

где A – коэффициент материала;

μ a – абсолютная магнитная проницаемость;

f – частота электромагнитного излучения, Гц.

Электрофизические параметры, данные об эквивалентной глубине проникновения для материалов экранов, представляющих наибольший интерес, приведены в таблицах 5.8 и 5.9.

Таблица 5.8 Электрические параметры некоторых металлов

Таблица 5.9. Эквивалентная глубина проникновения δ для различных экранирующих материалов, мм

Частота f , Гц Медь Латунь Алюминий Сталь Пермаллой μ r = 12 000
μ r = 50 μ r = 100
10 2 6,700 12,400 8,800 2,300 1,540 0,380
10 3 2,100 3,900 2,750 0,700 0,490 0,120
10 4 0,670 1,240 0,880 0,230 0,154 0,038
10 5 0,210 0,390 0,275 0,070 0,049 0,012

На высоких частотах при относительно большой толщине материала d > δ эффективность экрана можно определить по приближенному уравнению

где d – толщина стенок экрана;

δ – эквивалентная глубина проникновения;

D – ширина прямоугольного экрана или диаметр цилиндрического или сферического;

μ r – относительная магнитная проницаемость;

m – коэффициент формы экрана, для прямоугольного m = 1, для цилиндрического m = 2 и для сферического m = 3.

Величину Э пл можно рассматривать как произведение двух сомножителей:

Первый из сомножителей характеризует эффективность отражения первичной падающей волны электрического поля от поверхности экрана.

Можно получить следующие приближенные зависимости для оценки величины первого сомножителя зависимости (5.14):

Из формулы (5.15) видно, что с увеличением толщины экрана величина Э пл.отр возрастает до некоторой величины, после чего не меняется. Это и понятно, так как при d > δ явления на поверхности практически перестают зависеть от d .

С повышением частоты эффективность отражения сначала сохраняется неизменной, а потом начинает уменьшаться и при d > δ оказывается практически обратно пропорциональной . Причина в том, что из-за поверхностного эффекта возрастает поверхностное сопротивление экрана.

Второй сомножитель формулы (5.14) характеризует степень ослабления электрической составляющей при проникновении поля сквозь толщу стенки экрана. Приближенно его можно оценить по зависимости

Формулы (5.12) позволяют сравнивать между собой различные металлы, как материалы для экрана. Действительно, при d/ δ < 0,1 эффективность экрана пропорциональна удельной проводимости δ и не зависит от магнитной проницаемости материала. Следовательно, при равных толщинах медный экран лучше алюминиевого и намного лучше стального. Однако с ростом толщины d или частоты f картина изменяется, так как существенную роль при определении Э начинает играть член е d/ δ . А так как у стали толщина поверхностного слоя много меньше, чем у меди и алюминия, то стальной экран оказывается более эффективным. Граничная частота f гр, при которой эффективность стального и медного экранов одна, зависит от d и определяется формулой

где μ – относительная магнитная проницаемость стали.

При произвольной форме экрана и конечных размерах диполя (источника поля) количественная оценка эффективности экранирования сильно затруднена. Поэтому для получения такой оценки обратимся к простейшему случаю – шаровому экрану.

Эффективность шарового экрана с внутренним радиусом R и толщиной стенок d по отношению к элементарному диполю, расположенному в его центре, при d << R << λ2π определяется формулой

где Э пл находится из (5.12).

Электромагнитная волна элементарного диполя не плоская, а сферическая; однако при d << R можно считать поле в толще стенок экрана плоским и воспользоваться для оценки ослабления его формулой (5.17), а для оценки ослабления поля от экрана следующей приближенной зависимостью:

Нетрудно видеть, что с повышением частоты эффективность ослабления уменьшается.

Расчеты и испытания показывают, что на частотах ниже 100 кГц плоский стальной экран менее эффективен, чем медный и алюминиевый, но на частотах выше 1 МГц его эффективность уже на пять порядков выше эффективности плоского медного экрана. Эти соотношения сохраняются и для шаровых экранов при экранировании диполей обоих типов. Напомним, что большая часть энергии ЭМИ излучается в диапазоне частот 15 ÷ 30 кГц.

Эффективность экранирования замкнутыми экранами источников типа электрического диполя очень велика. Даже при толщине стенок 0,1 мм она на всех частотах при всех практически возможных размерах и для всех трех рассмотренных материалов превышает 106 (120 дБ).

При экранировании источников типа магнитный диполь на частотах порядка 10 кГц и ниже для получения большой эффективности экран должен быть толстостенным. Так на частоте 10 кГц при R = 100 мм эффективность экранов различной толщины принимает значения, приведенные в таблице 5.10.

Таблица 5.10. Эффективность экранов различной толщины

В случае замкнутого экрана поле может проникнуть в экран только через толщу стенок.

Из сказанного ранее следует, что соответствующим выбором материала экрана и толщины стенок принципиально можно получить сколь угодно большую эффективность экранирования. В реальных же экранах неизбежны более или менее значительные отверстия и щели, которые образуют дополнительный канал для проникновения поля. Вследствие этого эффективность экрана уменьшается.

Если стенки очень тонкие, а отверстия и щели незначительны, то поле внутри экрана создается в основном за счет проникновения через стенки. Смена материала и утолщение стенок могут в этом случае повысить эффективность экранирования. Напротив, если стенки относительно толстые, а отверстия и щели значительны, то поле внутри экрана создается в основном за счет проникновения через эти отверстия и щели, так что утолщение стенок малоэффективно.

В большинстве ситуаций свойства экрана часто определяются не толщиной и типом материала, а дефектами – отклонениями от идеальной конструкции. Этими дефектами являются в основном различные отверстия и щели (нарушения однородности экрана).

Анализ проникновения электромагнитного поля через малое отверстие в бесконечно тонком идеально проводящем экране позволяет сделать следующие выводы. Круглое и квадратное отверстие одной и той же площади пропускают электромагнитное поле практически одинаково. Через узкую щель поле проникает слабее, чем через квадратное отверстие той же площади. Особый интерес представляет то обстоятельство, что при данной форме отверстия момент эквивалентности диполя пропорционален площади этого отверстия в степени три вторых. Из этого следует, что замена одного большого отверстия несколькими малыми, общая площадь которых равна площади этого большого отверстия, будет способствовать улучшению эффективности экрана. Расчеты показывают, что замена одного большого отверстия N малыми с той же общей площадью, ведет к ослаблению поля, проникающего в защищаемую область пространства в раз.

Ориентировочно ослабление поля, проникающего через отверстие, вследствие конечности толщины стенок d можно учесть, рассматривая отверстие как запредельный волновод – волноводный фильтр. Обозначив коэффициент ослабления такого поля через Э α , можно соответственно принять

где α зависит от характера поля, формы и величины отверстия. Значение α для круглого и прямоугольного отверстия приведены в таблице 5.11.

Проникновение поля через отверстие может быть существенно ослаблено путем насадки на это отверстие патрубка.

При этом величина Э α может быть найдена по формуле (5.20) с заменой в ней d на длину патрубка l .

Таблица 5.11. Зависимость коэффициента α от формы и величины отверстия в экране

Значительное ослабление проникновения поля через отверстие можно получить, применяя разделение одного большого отверстия на несколько малых с одновременным применением патрубков .

Заключение

В учебном пособии рассматриваются основные проблемы ЭМС различных радиоэлектронных средств.

В первой главе проведен анализ основных источников ЭВМ и рассмотрены предельно доступные уровни электромагнитного поля для потребительской продукции, на рабочих местах и населения.

Во второй главе рассмотрены естественные источники, подробно описывается электромагнитная обстановка, дана теория области близких и волновых зон грозовых разрядов. Проведены основные методы грозозащиты оборудования, локальных сетей, линий передач (коаксиальных).

Подробно рассмотрен пример устройства грозозащиты для бытового применения.

Мощные радиопередающие средства создают МЭМП в первую очередь излучением антенн как над поверхностью земли, так и в подземный район и излучения РЭС.

Приведена инженерная методика расчета стоимости РЭС к воздействию МЭМП.

В пятой главе рассмотрена методика оценки устойчивости РЭС к воздействию электромагнитного импульса ядерного взрыва и рассмотрены практические задачи электромагнитного экранирования, решаемые в курсовом и дипломном проектировании.

Список литературы

1. Иванов В.А. Электромагнитная совместимость радиоэлектронных средств / В.А. Иванов, Л.Я. Ильинский, М.И. Фузик. – К.: Техника, 1983. – 120 с.

2. Князев, А.Д. Элементы теории и практики электромагнитной совместимости радиоэлектронных средств. – М.: Радио и связь, 1984. – 336 с.

3. Радиоэлектронные средства и мощные электромагнитные помехи / под ред. В.И. Кравченко. – М.: Радио и связь, 1984. – 256 с.

4. Крылов, В.А. Защита от электромагнитных излучений / В.А. Крылов, Т.В. Югенков. – М.: Советское радио, 1972. – 216 с.

5. Уайт, Д. Электромагнитная совместимость радиоэлектронных средств и непреднамеренные помехи / Д. Уайт; пер. с англ. – М.: Советское радио, 1977. – Вып. 1. – 348 с.

6. ГОСТ 11001–80. Измерители радиопомех. Общие требования.

7. Михайлов, А.С. Измерение параметров ЭМС РЭС / А.С. Михайлов. – М.: Связь, 1980. – 244 с.

8. Михайлов, А.С. Справочник по расчету электромагнитных экранов / А.С. Михайлов. – М.: Энергоатом изд-во, 1988. – 244 с.

9. ГОСТ Р 51724–2001. Экранированные объекты, помещения, технические средства. Поле гипогеомагнитное.

10. САНПИН 2.2.4.1191–03 Электромагнитные поля в производст-венных условиях. Постановление о введении в действие санитарных правил и нормативов.


Введение
Проблема электромагнитной совместимости
1.1 Электромагнитное поле, его виды и классификация
1.2 Основные источники электромагнитного поля
Естественные источники
2.1 Влияние грозовых разрядов на радиоэлектронные средства
2.2 Электромагнитная обстановка
Грозозащита
3.1 Защита оборудования от грозы
3.2 Грозозащита локальных сетей
3.3 Защита коаксиальных кабелей
3.4 Пример устройства грозозащиты
Мощные радиопередающие средства
4.1 Электромагнитное излучение антенн
4.2 Формирование ЭМО и ее характеристики
4.3 Расчеты стойкости РЭС к воздействию МЭМП
4.3.1 Формирование модели взаимодействия МЭПМ с РЭС
4.3.2 Формирование программы
4.3.3 Обсуждение результатов расчета
Устойчивость радиоэлектронных средств к воздействию электромагнитного импульса ядерного взрыва
5.1 Оценка устойчивости электромагнитных систем к воздействию ЭМИ
5.2 Методы повышения устойчивости электронных систем к воздействию ЭМИ
5.3 Электромагнитное экранирование
Заключение
Список литературы

Правила данного раздела, применимы для защищенных кабелей или кабелей с экранированными элементами. Даются только базовые рекомендации. Процедуры, необходимые для заземления экранов с целью обеспечения электрической безопасности и электромагнитной совместимости (ЭМС), определяются национальными и местными нормативами. Качество систем зависит от квалификации работников и, как правило, требует специальной методики монтажа. Неправильное экранирование может снизить производительность и уровень безопасности системы.

10.1. Электромагнитная совместимость

Экраны (кабелей и каждой пары - А.В.) призваны улучшить ЭМС. Для этого их необходимо подключить на массу. Эффективность экранирования достигается наличием экрана для каждого кабельного элемента (витой пары - А.В.) и соответствием переходного волнового сопротивления 1) экранов параметрам подразделов 8 и . Экран должен быть непрерывным для всего канала. Этому требованию должны отвечать фиксированные кабели, входящие в состав СКС, а также абонентские и сетевые кабели, используемые для создания канала. Кабели (включая абонентские и сетевые) следует тщательно выбирать, правильно устанавливать и соединять. Особое внимание следует уделять выбору разъемов и правилам их монтажа.

Примечание
Издание международного стандарта IEC 603–7 1990 года не включает рекомендации по монтажу защитных экранов. Очередная редакция стандарта будет включать спецификации защитного экранирования. Установка защищенных элементов не гарантирует соответствия требованиям ЭМС .

Малое переходное волновое сопротивление кабелей и разъемов является не единственным требованием. Кабели следует монтировать на коннекторы розеток и панелей с учетом непрерывности экрана. Методы монтажа зависят от типа и конструкции кабелей и разъемов. В инструкции производителей следует включать информацию, позволяющую выполнять эти требования. Методики обеспечения защиты класса В и выше находятся на этапе изучения.

10.2. Заземление

Стандарт требует соблюдения правил безопасности, связанных с заземлением экранов кабелей и других металлических элементов кабельных систем.

Соединения должны выполняться в соответствии с требованиями электрических нормативов. Экраны всех кабелей должны быть подключены к телекоммуникационной системе заземления. Экран должен быть постоянным и непрерывным. Экран кабелей должен обеспечивать непрерывный путь к «земле» во всех частях экранированной кабельной системы. Для снижения волнового сопротивления рекомендуется соединять металлические кабелепроводы с проводниками системы заземления, проходящими в них, на обоих концах кабелепровода. Стойки активного оборудования следует соединять с электродом заземления, который используется для защиты систем подачи электропитания в здание. Все электроды заземления различных систем в здании должны быть соединены в одной точке для уменьшения влияния разности потенциалов земли.

Система заземления здания должна соответствовать ограничениям на разность потенциалов в 1 BB и на сопротивление между любыми двумя элементами системы заземления.

Если вышеупомянутое требование не может быть выполнено, для уменьшения риска возникновения сильных блуждающих токов в телекоммуникационной системе следует использовать волоконно-оптический кабель.

Рекомендация соединять стойки активного оборудования с электродом заземления некорректна. Оборудование чаще всего располагают на одних стойках / в тех же шкафах, что и панели. Оборудование и панели подключают к телекоммуникационной системе заземления, центральный терминал которой соединяют с главным электрическим терминалом, который, в свою очередь, соединен с землей с помощью электродов.

Положения данного раздела относятся только к защищенным кабелям (150 ом), которые исключены из второго издания ISO/IEC 11801 . Экранированные и неэкранированные системы не рассматриваются. Рекомендации носят самый общий характер и не позволяют создавать систему экранирования и заземления без использования других документов. Наиболее полным является стандарт TIA/EIA-607 , «Требования по заземлению и электрическим соединениям телекоммуникационных систем коммерческих зданий». Но даже он оставляет часть системы телекоммуникационного заземления на усмотрение производителей.

Требования и параметры систем заземления и экранирования, включающие TIA/EIA-607 (от центрального терминала до телекоммуникационной шины заземления) и рекомендации ITT NSS (от шины до панелей, кабелей и разъемов) можно получить на семинарах для заказчиков и авторизованных курсах для проектировщиков СКС - А.В.

Сервис анализа защищенности предназначен для выявления уязвимых мест с целью их оперативной ликвидации. Сам по себе этот сервис ни от чего не защищает, но помогает обнаружить (и устранить) пробелы в защите раньше, чем их сможет использовать злоумышленник. В первую очередь, имеются в виду не архитектурные (их ликвидировать сложно), а "оперативные" бреши, появившиеся в результате ошибок администрирования или из-за невнимания к обновлению версий программного обеспечения.

Системы анализа защищенности (называемые также сканерами защищенности ), как и рассмотренные выше средства активного аудита, основаны на накоплении и использовании знаний. В данном случае имеются в виду знания о пробелах в защите: о том, как их искать, насколько они серьезны и как их устранять.

Соответственно, ядром таких систем является база уязвимых мест , которая определяет доступный диапазон возможностей и требует практически постоянной актуализации.

В принципе, могут выявляться бреши самой разной природы: наличие вредоносного ПО (в частности, вирусов), слабые пароли пользователей, неудачно сконфигурированные операционные системы, небезопасные сетевые сервисы, неустановленные заплаты, уязвимости в приложениях и т.д. Однако наиболее эффективными являются сетевые сканеры (очевидно, в силу доминирования семейства протоколов TCP/IP), а также антивирусные средства. Антивирусную защиту мы причисляем к средствам анализа защищенности, не считая ее отдельным сервисом безопасности.

Сканеры могут выявлять уязвимые места как путем пассивного анализа, то есть изучения конфигурационных файлов, задействованных портов и т.п., так и путем имитации действий атакующего. Некоторые найденные уязвимые места могут устраняться автоматически (например, лечение зараженных файлов), о других сообщается администратору.

Системы анализа защищенности снабжены традиционным "технологическим сахаром": автообнаружением компонентов анализируемой ИС и графическим интерфейсом (помогающим, в частности, эффективно работать с протоколом сканирования).

С возможностями свободно распространяемого сканера Nessus можно ознакомиться, прочитав статью "Сканер защищенности Nessus: уникальное предложение на российском рынке" (Jet Info,).

Контроль, обеспечиваемый системами анализа защищенности, носит реактивный, запаздывающий характер, он не защищает от новых атак, однако следует помнить, что оборона должна быть эшелонированной, и в качестве одного из рубежей контроль защищенности вполне адекватен. Отметим также, что подавляющее большинство атак носит рутинный характер; они возможны только потому, что известные бреши в защите годами остаются неустраненными.

Виды экранирования. Принципы действия экранов.

Под экранированием в общем случае понимается как защита приборов от воздействия внешних полей, так и локализация излучения каких-либо средств, препятствующая проявлению этих излучений в окружающей среде.

Электромагнитными экранами называют конструкции, предназначенные для ослабления электромагнитных полей, создаваемых какими-либо источниками в некоторой области пространства, не содержащей этих источников.

Если экран обеспечивает требуемое ослабление электростатического (или квазиэлектростатического) поля, но практически не ослабляет магнитостатического (или квазимагнитостатического) поля, то его называют электростатическим.

Если экран должен существенно ослаблять магнитостатическое (или квазимагнитостатическое) поле, то его называют магнитостатическим.

Если же экран должен ослаблять переменное электромагнитное поле, то экран называется электромагнитным.

Принципы действия всех видов экранов приведены в таблице.


в

Только в простейших случаях эффективность экрана определяется однозначно. К таким случаям относятся:

Экранирование полупространства от плоской электромагнитной волны бесконечным плоским однородным экраном;

Экранирование однородным шаровым экраном точечного источника, расположенного в его центре;

Экранирование однородным бесконечно протяженным цилиндрическим экраном линейного источника, лежащего на его оси.

В теории электромагнитного экранирования рассматриваются в первую очередь именно такие случаи, а реальные случаи сводятся к ним путем большей или меньшей идеализации. Естественно, что при этом в соответствующей степени страдает точность оценки.

В особо сложных случаях приходится прибегать к ряду условностей, например, определять ее для области защищаемого пространства, лежащей на достаточно большом расстоянии от экрана, для худшей точки этой области, для худшего из возможных расположений источника поля. В таких случаях точность оценки еще более снижается и можно с уверенностью судить на основании расчетов лишь о порядке наименьшей возможной эффективности.

Толщина экрана, необходимая для обеспечения заданного значения его эффективности, легко определяется из зависимости глубины проникновения от частоты для различных материалов, часто используемых при изготовлении экранов, приведены на рис. 1.

11 606 0 Здравствуйте! В этом статье мы рассмотрим современную процедуру – экранирование волос. После нее волосы выглядят ухоженными и насыщаются полезными веществами. Ниже мы разберемся, как именно ее делают и насколько она эффективна.

Что такое экранирование волос

Экранирование – это современная лечебная процедура, которая улучшает состояние волос изнутри. Во время процедуры используются средства, которые создают на поверхности защитную пленку. Поврежденные волосы восстанавливаются. Внутри волоска нормализуется водный баланс и происходит обогащение витаминами и микроэлементами. Защитный слой запечатывает вещества в локонах, поэтому с каждой процедурой их накапливается все больше.

Экранирование поврежденных волос приносит большую пользу, так как оно способствует их восстановлению. Средства производятся на основе соевого белка, аминокислот и различных растительных компонентов.

Процедура осуществляется в 3 этапа – для каждого используется свой компонент:

  1. Выравнивание и увлажнение.
  2. Восстановление и укрепление.
  3. Защита и блеск.

Хотя о процедуре стало известно сравнительно недавно, сегодня она приобрела большую популярность. Вы можете сделать экранирование сразу после окрашивания волос или спустя некоторое время. Оно подходит и для натуральных проблемных локонов, которые никогда не подвергались воздействию краски.

Экранирование волос: разновидности

В салоне вы сможете выбрать один из трех видов экранирования:

  • Цветное. В этом случае пряди обрабатываются препаратом с красящими пигментами. Они позволяют значительно изменить цвет локонов без использования перекиси водорода и щелочи. Такой вид окрашивания абсолютно безвредный, а, наоборот, оздоравливающий.
  • Бесцветное . Эффект от процедуры похож на предыдущий с одним отличием – цвет волос останется неизменным.
  • Спа-экранирование . Если вы хотите максимально расслабиться во время лечения локонов, то выбирайте этот вид. Пока мастер неторопливо будет выполнять свою работу, вы сможете насладиться массажем головы и приятными ароматами от используемых средств.

Плюсы и минусы

После процедуры ваши волосы станут выглядеть значительно лучше. Это выражается в следующих особенностях:

  • поверхность волосков блестит и сияет;
  • структура выравнивается и улучшается;
  • предотвращается сечение кончиков;
  • увеличивается объем шевелюры в 1,5 раза;
  • цвет становится ярким и насыщенным;
  • волоски уплотняются;
  • укладка и расчесывание осуществляется намного легче;
  • создается защитный барьер от негативного воздействия извне;

Помимо этого при каждой процедуре накапливается положительный эффект. В средствах для экранирования не содержится вредных компонентов, поэтому они мягко воздействуют на волосы. После сеанса они будут источать приятный аромат.

Не у всех женщин отмечается только положительный эффект от процедуры. Некоторые могут столкнуться со следующими негативными последствиями:

  • волосы становятся жесткими и тяжелыми;
  • после мытья головы наблюдается сильная электризация;
  • при повышенной сальности волос, они приобретут вид «сосулек»;
  • на здоровых локонах эффект не наблюдается;
  • при разовых сеансах волосы улучшаются ненадолго, так как требуется прохождение целого курса.

Экранирование подходит не для всех типов и состояния волос, поэтому нет смысла делать процедуру при отсутствии показаний.

Показания к процедуре

  1. Секущиеся, ослабленные и сухие локоны.
  2. Частое использование приборов для укладки.
  3. Волосы после окрашивания, химии и выпрямления.
  4. Блеклый и тусклый цвет шевелюры.
  5. Часто пребывание в неблагоприятной среде.

Как делают экранирование в салоне?

Прежде чем вы решите, поможет ли вам такая процедура, давайте рассмотрим, как ее делают специалисты:

  • Шаг 1. Сначала мастер помоет голову с использованием специального шампуня и даст локонам подсохнуть естественным способом.
  • Шаг 2. Затем он на каждую прядь нанесет средства с активными веществами, действия которых направлены на защиту, увлажнение и питание. Количество препаратов может разниться в зависимости от салона, но обычно их не менее трех.
  • Шаг 3. Когда вещества проникнут внутрь волосков, вашу голову опять помоют и обработают экранирующей смесью. Если предполагается окрашивание волос, то в ней будут присутствовать пигменты.
  • Шаг 4. Через полчаса мастер высушит ваши пряди феном. Это нужно для ускорения проникновения последнего средства внутрь волосков.
  • Шаг 5. Полученный результат фиксируют специальным бальзамом. Далее мастер проконсультирует вас по поводу правильного ухода.

Что нужно для домашнего экранирования?

Процедуру экранирования вы можете сделать самостоятельно. Для этого нужно купить средства для экранирования волос. Всего для домашнего экранирования потребуется:

  • набор для экранирования;
  • расческа;
  • перчатки;
  • полотенце.

Инструкция в каждом наборе имеет подробное описание процедуры. Даже если раньше вы не сталкивались с подобными манипуляциями, вы сможете разобраться с тонкостями проведения экранирования.

Постарайтесь приобрести набор для экранирования волос высокого качества от надежного бренда. После нанесения дешевого средства можно испортить волосы, после чего их сможет восстановить только профессионал.

Линейки некоторых марок предполагают четкое разделение наборов в зависимости от цвета волос, поэтому экранирование блондированных волос можно проводить без опасений. Здесь подходит экранирование волос q3.

Наиболее популярны, следующие наборы для экранирования волос от фирмы Эстель:

  • Q3 Эстель НАБОР для процедуры Экранирования поврежденных волос ESTEL
  • Estel, Набор Q3 Blond для экранирования блондированных волос

Домашнее экранирование волос: инструкция

Как делать экранирование самостоятельно:

  • Шаг 1. Помойте локоны теплой водой и шампунем из набора.
  • Шаг 2. Хорошенько вытрите волосы полотенцем без использования фена.
  • Шаг 3. Нанесите на пряди бальзам или маску из набора. Средство используют для питания локонов и подготовки к впитыванию целебных веществ. Оно делает каждый волосок более восприимчивым к компонентам препаратов, приподнимая чешуйки.
  • Шаг 4. Выждите время, указанное в инструкции и помойте голову.
  • Шаг 5. Теперь предстоит нанести массу для экранирования. Тщательно промажьте каждую прядь и спрячьте локоны под целлофан. Утеплите голову полотенцем.
  • Шаг 6. Спустя полчаса помойте шевелюру и высушите феном.
  • Шаг 7. В завершение нанесите на волосы средство для закрепления и не смывайте.

Порядок проведения процедуры и видео-отзыв с результатами экранирования волос в домашних условиях.

Периодичность процедур

Эффект вы заметите после первой процедуры, но он быстро исчезнет, если сеансы экранирования будут приостановлены. Уже при третьем нанесении средств локоны приобретут среднюю степень защищенности, а при пятом – высшую.

Ухоженный вид после каждой процедуры сохраняется в течение 2-3 недель, поэтому периодичность сеансов зависит от того, сколько держится эффект, и составляет 1 раз в 14 дней.

Через полгода вы сможете повторить курс.

Когда лучше делать экранирование

Рекомендуется экранировать волосы летом. Невидимая пленка станет отличной защитой от палящего солнца и соленой морской воды, если вы собираетесь отдыхать на море. Эти факторы негативно сказываются на состоянии локонов.

В средствах для экранирования содержатся ультрафиолетовые фильтры, которые предохраняют волосы точно так же, как крема от солнца защищают кожу. Пленка предотвращает цвет от выгорания.

Уход за волосами после процедуры

Если вы хотите, чтобы эффект сохранялся длительное время, то за волосами нужно правильно ухаживать. Рекомендации заключаются в следующем:

  • мойте шевелюру бесщелочными шампунями той же марки, что и был набор для экранирования;
  • откажитесь от спиртосодержащих масок;
  • используйте составы от электризации волос;
  • не скрабируйте кожу головы;
  • после мытья волос не нужно их выжимать и интенсивно тереть полотенцем;
  • старайтесь мыть голову как можно реже, так как частые процедуры приведут к быстрому вымыванию веществ.

Противопоказания

  1. Толстые и густые волосы.
  2. Повышенная жирность локонов.
  3. Заболевания кожи.
  4. Раны и ссадины на голове.
  5. Аллергия на компоненты.

Что лучше: ламинирование или экранирование волос

Наверняка, вам показалось, что экранирование ничем не отличается от ламинирования, но это не так. – это косметическая процедура, которая только маскирует повреждения и защищает от внешнего воздействия. Она не производит лечебный эффект.

Совершенно различается и технология нанесения составов. Специалисты сходятся во мнении о большой эффективности проведения двух процедур одновременно. Это обосновывается следующими тезисами:

  1. Волосы будут вдвойне защищенными, поэтому никакие агрессивные условия среды для них не страшны.
  2. Даже если один из составов начнет смываться, то другой поддержит прекрасный вид локонов – гладкость, силу и упругость.

С чем еще можно совместить экранирование?

Кроме ламинирования вы можете сочетать экранирование со следующими процедурами:

  • Полировка . Технология проста – отдельные прядки волос выравнивают и обрабатывают машинкой. Она удаляет секущиеся и поврежденные волосы без изменения длины локонов. Процедура может производиться отдельно, но полировка и экранирование волос одновременно помогут быстро восстановить проблемные локоны.
  • . Во время процедуры происходит внедрение натурального белка — кератина, который отвечает за строительство волосков. Это осуществляется под высокой температурой, воздействие которой хорошо сгладит экранирование.

Экранирование – это один из многочисленных способов сделать волосы красивыми и здоровыми. Наборы профессиональных средств разработаны таким образом, что вы легко сможете использовать их в домашних условиях. Как часто делать процедуру в этом случае вы определите сами.



Понравилось? Лайкни нас на Facebook